题目内容
3.(1)求曲线C1和曲线C2的交点坐标;
(2)试求an+1与an之间的关系;
(3)证明:${a_{2n-1}}<\frac{1}{2}<{a_{2n}}$.
分析 (1)取立$\left\{\begin{array}{l}{y=\frac{2x}{x+1},x>0}\\{y=\frac{1}{3x},x>0}\end{array}\right.$,能求出曲线C1和曲线C2的交点坐标.
(2)设Pn(${a}_{n},{y}_{{p}_{n}}$),${Q}_{n}({x}_{{Q}_{n}},{y}_{{Q}_{n}})$,由已知${y}_{{P}_{n}}=\frac{2{a}_{n}}{{a}_{n}+1}$,能求出${a}_{n+1}=\frac{{a}_{n}+1}{6{a}_{n}}$.
(3)由${a}_{n+1}=\frac{{a}_{n}+1}{6{a}_{n}}$,${a}_{n+1}-\frac{1}{2}=\frac{-2({a}_{n}-\frac{1}{2})}{6{a}_{n}}$,得${a}_{n+1}-\frac{1}{2}$与${a}_{n}-\frac{1}{2}$异号,由此能证明a2n-1$<\frac{1}{2}<{a}_{2n}$.
解答 解:(1)∵曲线${C_1}:y=\frac{2x}{x+1}\;\;(x>0)$及曲线${C_2}:y=\frac{1}{3x}\;\;(x>0)$,
取立$\left\{\begin{array}{l}{y=\frac{2x}{x+1},x>0}\\{y=\frac{1}{3x},x>0}\end{array}\right.$,得x=$\frac{1}{2}$,y=$\frac{2}{3}$,
∴曲线C1和曲线C2的交点坐标是($\frac{1}{2},\frac{2}{3}$).
(2)设Pn(${a}_{n},{y}_{{p}_{n}}$),${Q}_{n}({x}_{{Q}_{n}},{y}_{{Q}_{n}})$,由已知${y}_{{P}_{n}}=\frac{2{a}_{n}}{{a}_{n}+1}$,
又${y}_{{Q}_{n}}={y}_{{P}_{n}}$,${x}_{{Q}_{n}}=\frac{1}{3{y}_{{Q}_{n}}}$=$\frac{1}{3-\frac{2{a}_{n}}{{a}_{n}+1}}$=$\frac{{a}_{n}+1}{6{a}_{n}}$=${x}_{{p}_{n+1}}={a}_{n+1}$,
${a}_{n+1}=\frac{{a}_{n}+1}{6{a}_{n}}$.
证明:(3)an>0,由${a}_{n+1}=\frac{{a}_{n}+1}{6{a}_{n}}$,${a}_{n+1}-\frac{1}{2}=\frac{-2({a}_{n}-\frac{1}{2})}{6{a}_{n}}$,
得${a}_{n+1}-\frac{1}{2}$与${a}_{n}-\frac{1}{2}$异号,
∵0<a1$<\frac{1}{2}$,${a}_{1}-\frac{1}{2}<0$,${a}_{2n-1}-\frac{1}{2}<0$,${a}_{2n}-\frac{1}{2}>0$,
∴a2n-1$<\frac{1}{2}<{a}_{2n}$.
点评 本题考查两曲线交点坐标的求法,考查数列中前一项与后一项的关系的求法,考查不等式的证明,是中档题,解题时要认真审题,注意函数性质的合理运用.