题目内容

12.若函数f(x)是二次函数,且满足f(0)=1,f(x+1)=f(x)+2(x-1),则f(x)的解析式为f(x)=x2-3x+1.

分析 函数f(x)是二次函数,设出f(x)=ax2+bx+c,根据f(0)=1,f(x+1)=f(x)+2(x-1),待定系数法求出a,b,c的值可得f(x)的解析式.

解答 解:由题意:函数f(x)是二次函数,设出f(x)=ax2+bx+c,
∵f(0)=1,
∴c=1.
f(x)=ax2+bx+1,
∵f(x+1)=f(x)+2(x-1),
那么:a(x+1)2+b(x+1)+1=ax2+bx+1+2(x-1),
?2ax+a+b=2x-2
由:$\left\{\begin{array}{l}{2a=2}\\{a+b=-2}\end{array}\right.$,
解得:a=1,b=-3.
∴f(x)的解析式为f(x)=x2-3x+1,
故答案为:f(x)=x2-3x+1.

点评 本题考查了函数解析式的求法,利用了待定系数法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网