题目内容
若变量x,y满足约束条件
,且z=2x+y的最小值为-6,则k= .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定k的值即可.
解答:
解:作出不等式对应的平面区域,(阴影部分)
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,此时z最小.
目标函数为2x+y=-6,
由
,解得
,
即A(-2,-2),
∵点A也在直线y=k上,
∴k=-2,
故答案为:-2.
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,此时z最小.
目标函数为2x+y=-6,
由
|
|
即A(-2,-2),
∵点A也在直线y=k上,
∴k=-2,
故答案为:-2.
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
练习册系列答案
相关题目
已知a>b>0,椭圆C1的方程为
+
=1,双曲线C2的方程为
-
=1,C1与C2的离心率之积为
,则C2的渐近线方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
A、x±
| ||
B、
| ||
| C、x±2y=0 | ||
| D、2x±y=0 |