题目内容

在数列{an}中,a1=255,
1
1+an+1
-
1
1+an
=
1
256
(n∈N*),
(Ⅰ)求数列{an}的通项公式
(Ⅱ)设bk=ka2k(k∈N*),记数列{bk}的前k项和为Bk,求Bk的最大值.
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)设cn=an+1,将递推公式转化为与cn相关的式子,进而求出数列的通向公式.
(Ⅱ)求出数列{bn}的通项,利用等比数列求和公式即可求解.
解答: 解:(Ⅰ)设cn=an+1,则数列{
1
cn
}
是一个等差数列,
1
c1
=
1
256
,d=
1
256

1
cn
=
1
256
+
1
256
(n-1)

=
n
256

∴cn=
256
n

∴an=cn-1=
256
n
-1

(Ⅱ)由(Ⅰ)得bn=n•a2n=
256n
2n
-n
∵当n≤256时,an≥0,由2k≤256,得k≤8
∴数列{bk}的前8项和B8最大.
B8=256×(
1
2
+
2
22
+
3
23
+…+
8
28
)-(1+2+3+…+8)

T8=
1
2
+
2
22
+
3
23
+…+
8
28

由错位相减法可求得
T8=2-5×(
1
2
)7

∴B8=256×[2-5(
1
2
)7]-36
=466.
∴Bk的最大值为466.
点评:本题主要考察了利用递推公式求数列通项,以及等比数列的求和,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网