题目内容
数列{an}中,a1=
,an+1=an2-an+1.
(1)求证:
=
-
(2)设Sn=
+
+
+…+
,n>2,证明:Sn<2.
| 3 |
| 2 |
(1)求证:
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
(2)设Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
考点:数列递推式,数列的求和
专题:点列、递归数列与数学归纳法
分析:(1)把数列递推式变形,取倒数后整理得答案;
(2)由(1)中的结论把
列项,得到Sn=2-
,由已知条件a1=
,an+1=an2-an+1得到
an+1>an>1,从而证得Sn<2.
(2)由(1)中的结论把
| 1 |
| an |
| 1 |
| an+1-1 |
| 3 |
| 2 |
an+1>an>1,从而证得Sn<2.
解答:
证明:(1)∵an+1=an2-an+1=an(an-1)+1,
∴an+1-1=an(an-1),
∴
=
=
-
.
∴
=
-
;
(2)由(1)知,
=
-
,
∴Sn=
+
+
+…+
=(
-
)+(
-
)+…+(
-
)
=
+
=2-
.
∵an+1=an2-an+1=(an-1)2≥0,且a1=
>1,
∴an+1>an>1,
∴2-
<2.
即Sn<2.
∴an+1-1=an(an-1),
∴
| 1 |
| an+1-1 |
| 1 |
| an(an-1) |
| 1 |
| an-1 |
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
(2)由(1)知,
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
∴Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
=(
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| an-1 |
| 1 |
| an+1 |
=
| 1 |
| a1-1 |
| 1 |
| an+1-1 |
| 1 |
| an+1-1 |
∵an+1=an2-an+1=(an-1)2≥0,且a1=
| 3 |
| 2 |
∴an+1>an>1,
∴2-
| 1 |
| an+1-1 |
即Sn<2.
点评:本题考查了数列递推式,考查了裂项相消法求数列的和,训练了利用放缩法证明不等式,是中档题.
练习册系列答案
相关题目
△ABC中,BC=2,角B=
,当△ABC的面积等于
时,sinC=( )
| π |
| 3 |
| ||
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为( )
A、
| ||
| B、5 | ||
| C、25 | ||
D、
|