题目内容

设函数f(x)=alnx+
1
x
-a,(a∈R).
(1)当a>0时,求函数f(x)的单调区间;
(2)在(1)中,若函数f(x)的最小值恒小于ek+1,求实数k的取值范围;
(3)当a<0时,设x1>0,x2>0,且x1≠x2,试比较f(
x1+x2
2
)与
f(x1)+f(x2)
2
的大小.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)由题意x>0,f(x)=
a
x
-
1
x2
,由此能求出函数f(x)的单调区间.
(2)当x=
1
a
时,函数f(x)的最小值为f(
1
a
)=-alna,令g(a)=-alna,由g′(a)=-(lna+1)=0,得a=
1
e
.由此能求出实数k的取值范围.
(3)由已知条件推导出f(
x1+x2
2
)-
f(x1)+f(x2)
2
=aln
x1+x2
2
+
2
x1+x2
-aln
x1x2
-
x1+x2
2x1x2
=aln
x1+x2
2
x1x2
-
(x1-x2)2
2x1x2(x1+x2)
,由此能求出f(
x1+x2
2
)<
f(x1)+f(x2)
2
解答: (本小题满分12分)
解:(1)函数f(x)的定义域为(0,+∞).…(1分)
由题意x>0,f(x)=
a
x
-
1
x2
,…(2分)
由f′(x)<0,得
a
x
-
1
x2
<0
,解得x<
1
a

函数f(x)的单调递减区间是(0,
1
a
).
由f′(x)>0,得
a
x
-
1
x2
>0
,解得x>
1
a

函数f(x)的单调递增区间是(
1
a
,+∞
). …(4分)
(2)由(1)知,当x=
1
a
时,
函数f(x)的最小值为f(
1
a
)=aln
1
a
+a-a=-alna,
令g(a)=-alna,由g′(a)=-(lna+1)=0,∴a=
1
e

当0<a<
1
e
,g′(a)>0,a>
1
e
g (a)<0
g(a)min =g(
1
e
)=
1
e

∴由
1
e
ek+1
,得k>-2.
∴实数k的取值范围(-2,+∞).…(7分)
(3)∵f(
x1+x2
2
)=aln
x1+x2
2
+
2
x1+x2
-a

f(x1)+f(x2)
2
=
1
2
(alnx1+
1
x1
+alnx2+
1
x2
)-a

=
1
2
[aln(x1x2)+
x1+x2
x1x2
]-a
=aln
x1x2
+
x1+x2
2x1x2
-a.
f(
x1+x2
2
)-
f(x1)+f(x2)
2
=aln
x1+x2
2
+
2
x1+x2
-aln
x1x2
-
x1+x2
2x1x2

=aln
x1+x2
2
x1x2
-
(x1-x2)2
2x1x2(x1+x2)
.…(10分)
∵x1>0,x2>0,且x1≠x2,a<0,
∴x1+x2>2
x1x2
,∴
x1+x2
2
x1x2
>1
,aln
x1+x2
2
x1x2
<0.…(11分)
又-
(x1-x2)2
2x1x2(x1+x2)
<0
,∴aln
x1+x2
2
x1x2
-
(x1-x2)2
2x1x2(x1+x2)
<0

∴f(
x1+x2
2
)-
f(x1)+f(x2)
2
<0,
即f(
x1+x2
2
)<
f(x1)+f(x2)
2
.…(12分)
点评:本题考查函数的单调区间的求法,考查实数的取值范围的求法,考查两个数的大小的比较,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网