题目内容
11.对于?x∈[${\frac{1}{2}$,+∞)都有2x+a≥$\sqrt{2x-1}$恒成立,则a的取值范围为( )| A. | $({-∞,-\frac{1}{4}}]$ | B. | $[{-\frac{1}{4},+∞})$ | C. | $({-∞,-\frac{3}{4}}]$ | D. | $[{-\frac{3}{4},+∞})$ |
分析 问题转化为则a≥$\sqrt{2x-1}$-2x在[${\frac{1}{2}$,+∞)恒成立,令f(x)=$\sqrt{2x-1}$-2x,x∈[$\frac{1}{2}$,+∞),根据函数的单调性求出a的范围即可.
解答 解:对于?x∈[${\frac{1}{2}$,+∞)都有2x+a≥$\sqrt{2x-1}$恒成立,
则a≥$\sqrt{2x-1}$-2x在[${\frac{1}{2}$,+∞)恒成立,
令f(x)=$\sqrt{2x-1}$-2x,x∈[$\frac{1}{2}$,+∞),
f′(x)=$\frac{1-2\sqrt{2x-1}}{\sqrt{2x-1}}$,
令f′(x)>0,解得:$\frac{1}{2}$≤x<$\frac{5}{8}$,
令f′(x)<0,解得:x>$\frac{5}{8}$,
故f(x)在[$\frac{1}{2}$,$\frac{5}{8}$)递增,在($\frac{5}{8}$,+∞)递减,
故f(x)max=f($\frac{5}{8}$)=-$\frac{3}{4}$,
故a≥-$\frac{3}{4}$,
故选:D.
点评 本题考查了函数恒成立问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.
练习册系列答案
相关题目
11.若函数f(x)=lnx与函数g(x)=x2+2x+a(x<0)有公切线,则实数a的取值范围为( )
| A. | (ln$\frac{1}{2e}$,+∞) | B. | (-1,+∞) | C. | (1,+∞) | D. | (-ln2,+∞) |
16.已知函数f(x)=asinx-bcosx(其中a,b为正实数)的图象关于直线$x=-\frac{π}{6}$对称,且?x1,x2∈R,x1≠x2,f(x1)f(x2)≤4恒成立,则下列结论正确的是( )
| A. | $a=\sqrt{3}$,b=1 | |
| B. | 函数f(x)在区间$[{\frac{π}{6},π}]$上单调递增 | |
| C. | 函数f(x)的图象的一个对称中心为$({\frac{2}{3}π,0})$ | |
| D. | 不等式f(x1)f(x2)≤4取到等号时|x2-x1|的最小值为2π |
20.已知A,B,C是单位圆上互不相同的三点,且满足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,则$\overrightarrow{AB}$$•\overrightarrow{AC}$的最小值为( )
| A. | -$\frac{1}{4}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{3}{4}$ | D. | -1 |