题目内容

11.若函数f(x)=lnx与函数g(x)=x2+2x+a(x<0)有公切线,则实数a的取值范围为(  )
A.(ln$\frac{1}{2e}$,+∞)B.(-1,+∞)C.(1,+∞)D.(-ln2,+∞)

分析 分别求出导数,设出各自曲线上的切点,得到切线的斜率,再由两点的斜率公式,结合切点满足曲线方程,可得切点坐标的关系式,整理得到关于一个坐标变量的方程,借助于函数的极值和最值,即可得到a的范围.

解答 解:f′(x)=$\frac{1}{x}$,g′(x)=2x+2,
设与g(x)=x2+2x+a相切的切点为(s,t)s<0,与曲线f(x)=lnx相切的切点为(m,n)m>0,
则有公共切线斜率为2s+2=$\frac{1}{m}$=$\frac{n-t}{m-s}$,
又t=s2+2s+a,n=lnm,
即有a=s2-1+ln(2s+2),
设f(s)=s2-1-ln(2s+2)(-1<s<0),所以f'(s)=$\frac{2{s}^{2}+2s-1}{s+1}$<0
∴f(s)>f(0)=-ln2-1,∴a>-ln2-1,
∵s∈(-1,0),且趋近与1时,f(s)无限增大,∴a>-ln2-1
故选A.

点评 本题考查导数的几何意义,主要考查导数的运用:求单调区间和极值、最值,考查运算能力,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网