题目内容

1.记不等式组$\left\{\begin{array}{l}{x+y-4≤0}\\{3x-2y+3≥0}\\{x-4y+1≤0}\end{array}\right.$,所表示的区域为D.
(1)求区域D的面积.
(2)设P(x,y)为区域内一动点,求z=$\frac{y-2}{x+4}$的取值范围.

分析 (1)作出不等式组对应的排名区域,分别求出对应三角形的定点坐标,利用三角形的面积公式即可得到结论.
(2)利用可行域,通过表达式的几何意义求解直线的斜率即可.

解答 解:(1)作出不等式组$\left\{\begin{array}{l}x+y-4≤0\\ 3x-2y+3≥0\\ x-4y+1≤0\end{array}\right.$对应的平面区域如图所示,
由$\left\{\begin{array}{l}x+y-4=0\\ 3x-2y+3=0\end{array}\right.$,解得$\left\{\begin{array}{l}x=1\\ y=3\end{array}\right.$,即A(1,3).
同理得B(-1,0),C(3,1).D(4,0).
∴区域D的面积:S△ABC=$\frac{1}{2}DB•{y}_{A}$$-\frac{1}{2}$DB•yC=$\frac{1}{2}×5×3-\frac{1}{2}×5×1$=5.
(2)z=$\frac{y-2}{x+4}$的几何意义是可行域内的点与(-4,2)连线的斜率.
向量的范围为:${K}_{PB}≤\frac{y-2}{x+4}≤{K}_{PA}$,${K}_{PB}=\frac{0-2}{-1+4}$=$-\frac{2}{3}$,${K}_{PA}=\frac{3-2}{1+4}$=$\frac{1}{5}$.
z=$\frac{y-2}{x+4}$的取值范围:$[-\frac{2}{3},\frac{1}{5}]$.

点评 本题主要考查线性规划的应用,以及三角形面积的计算,表达式的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网