题目内容
各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2pan2+pan-p(p∈R).
(1)求数列{an}的通项公式;
(2)记bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)记bn=
| ||||
|
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)在已知数列递推式中取n=1,结合a1=1求得p=1,再代入数列递推式,同时取n=n-1得另一递推式,作差后可得an-an-1=
,即数列{an}是以1为首项,以
为公差的等差数列,由此求出等差数列{an}的通项公式;
(2)把等差数列的通项公式代入bn=
,分母有理化后裂项,然后利用裂项相消法求得数列{bn}的前n项和Tn.
| 1 |
| 2 |
| 1 |
| 2 |
(2)把等差数列的通项公式代入bn=
| ||||
|
解答:
解:(1)∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p,
∴2a1=2pa12+pa1-p,
即2=2p+p-p,解得p=1.
2Sn=2an2+an-1,①
2S n-1=2an-1 2+an-1-1,(n≥2),②
①-②即得(an-an-1-
)(an+an-1)=0,
∵an+an-1≠0,∴an-an-1-
=0,即an-an-1=
.
∴数列{an}是以1为首项,以
为公差的等差数列.
∴an=1+
(n-1)=
;
(2)bn=
=
=
=
(
-
),
∴Tn=
[(
-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(
+
-
-
).
∴2a1=2pa12+pa1-p,
即2=2p+p-p,解得p=1.
2Sn=2an2+an-1,①
2S n-1=2an-1 2+an-1-1,(n≥2),②
①-②即得(an-an-1-
| 1 |
| 2 |
∵an+an-1≠0,∴an-an-1-
| 1 |
| 2 |
| 1 |
| 2 |
∴数列{an}是以1为首项,以
| 1 |
| 2 |
∴an=1+
| 1 |
| 2 |
| n+1 |
| 2 |
(2)bn=
| ||||
|
| ||||||||
|
| 1 | ||||
|
| 1 |
| 2 |
| n+3 |
| n+1 |
∴Tn=
| 1 |
| 2 |
| 4 |
| 2 |
| 5 |
| 3 |
| 6 |
| 4 |
| n+2 |
| n |
| n+3 |
| n+1 |
=
| 1 |
| 2 |
| n+3 |
| n+2 |
| 3 |
| 2 |
点评:本题考查了数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的前n项和,是中档题.
练习册系列答案
相关题目
已知数列{an}满足a1>0,且an+1=
an,则数列{an}的最大项是( )
| n |
| n+1 |
| A、a1 |
| B、a9 |
| C、a10 |
| D、不存在 |