题目内容

等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an•2n-1,求{bn}的前n项和Tn
(理)(Ⅲ)若数列{cn}满足cn=
1
Sn+1-1
,且{cn}前n项和为Ln,求证:Ln
3
4
考点:数列的求和
专题:等差数列与等比数列
分析:(I)利用等差数列的通项公式即可得出;
(II)利用“错位相减法”即可得出;
(III)利用“裂项求和”即可得出.
解答: 解:(I)设等差数列{an}的公差为d,
∵2a1+3a2=11,2a3=a2+a6-4,∴
5a1+3d=11
2a1+4d=2a1+6d-4
,解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
(II)bn=an•2n-1=(2n-1)•2n-1
∴{bn}的前n项和Tn=1+3×2+5×22-…+(2n-1)•2n-1
2Tn=2+3×22+…+(2n-3)•2n-1+(2n-1)•2n
∴-Tn=1+2×2+2×22+…+2×2n-1-(2n-1)•2n=
2(2n-1)
2-1
-1-(2n-1)•2n=(3-2n)•2n-3.
∴Tn=(2n-3)•2n+3.
(III)Sn=
n(1+2n-1)
2
=n2
∴cn=
1
Sn+1-1
=
1
(n+1)2-1
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴Ln=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)
+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
3
4
点评:本题考查了等差数列的通项公式、等比数列的前n项和公式、“错位相减法”、“裂项求和”,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网