题目内容
10.在平面直角坐标系xOy中,先对曲线C作矩阵A=$[\begin{array}{l}{cosθ}&{-sinθ}\\{sinθ}&{cosθ}\end{array}]$(0<θ<2π)所对应的变换,再将所得曲线作矩阵B=$[\begin{array}{l}{1}&{0}\\{0}&{k}\end{array}]$(0<k<1)所对应的变换,若连续实施两次变换所对应的矩阵为$[\begin{array}{l}{0}&{-1}\\{\frac{1}{2}}&{0}\end{array}]$,求k,θ的值.分析 由题意及矩阵乘法的意义可得:BA=$[\begin{array}{l}{1}&{0}\\{0}&{k}\end{array}]$$[\begin{array}{l}{cosθ}&{-sinθ}\\{sinθ}&{cosθ}\end{array}]$=$[\begin{array}{l}{0}&{-1}\\{\frac{1}{2}}&{0}\end{array}]$,由矩阵的相等及参数的范围即可求解.
解答 解:∵A=$[\begin{array}{l}{cosθ}&{-sinθ}\\{sinθ}&{cosθ}\end{array}]$(0<θ<2π),B=$[\begin{array}{l}{1}&{0}\\{0}&{k}\end{array}]$(0<k<1),
∴由题意可得:BA=$[\begin{array}{l}{1}&{0}\\{0}&{k}\end{array}]$$[\begin{array}{l}{cosθ}&{-sinθ}\\{sinθ}&{cosθ}\end{array}]$=$[\begin{array}{l}{0}&{-1}\\{\frac{1}{2}}&{0}\end{array}]$,
∴$[\begin{array}{l}{cosθ}&{-sinθ}\\{ksinθ}&{kcosθ}\end{array}]$=$[\begin{array}{l}{0}&{-1}\\{\frac{1}{2}}&{0}\end{array}]$,解得:$\left\{\begin{array}{l}{\stackrel{cosθ=0}{-sinθ=-1}}\\{\stackrel{ksinθ=\frac{1}{2}}{kcosθ=0}}\end{array}\right.$,
∵0<θ<2π,0<k<1,
∴解得:k=$\frac{1}{2}$,θ=$\frac{π}{2}$.
点评 本题主要考查了矩阵乘法的意义,相等矩阵等知识的应用,属于基础题.
| A. | y=-4x-2 | B. | y=$\frac{6}{x}+1$ | C. | y=4x2+5 | D. | y=-3x2 |
| A. | -$\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | ±$\frac{\sqrt{2}}{4}$ | D. | ±$\frac{1}{4}$ |
| A. | x与y的相关性变强 | |
| B. | 残差平方和变大 | |
| C. | 相关指数R2变大 | |
| D. | 解释变量x与预报变量y的相关性变强 |