题目内容
用数学归纳法证明对任何正整数n有
+
+
+
+…+
=
.
| 1 |
| 3 |
| 1 |
| 15 |
| 1 |
| 35 |
| 1 |
| 63 |
| 1 |
| 4n2-1 |
| n |
| 2n+1 |
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:利用数学归纳法证明:①当n=1时,易证等式成立;②假设当n=k(k≥1,k∈N*)时等式成立,即
+
+
+
+…+
=
,用上该归纳假设,去证明当n=k+1时,等式也成立即可.
| 1 |
| 3 |
| 1 |
| 15 |
| 1 |
| 35 |
| 1 |
| 63 |
| 1 |
| 4k2-1 |
| k |
| 2k+1 |
解答:
证明:①当n=1时,左边=
,右边=
=
,
∴等式成立;
②假设当n=k(k≥1,k∈N*)时等式成立,即
+
+
+
+…+
=
,
则当n=k+1时,
+
+
+
+…+
+
=
+
=
+
=
=
=
.
∴当n=k+1时等式也成立.
由①②知等式对任何正整数n都成立.
| 1 |
| 3 |
| 1 |
| 2+1 |
| 1 |
| 3 |
∴等式成立;
②假设当n=k(k≥1,k∈N*)时等式成立,即
| 1 |
| 3 |
| 1 |
| 15 |
| 1 |
| 35 |
| 1 |
| 63 |
| 1 |
| 4k2-1 |
| k |
| 2k+1 |
则当n=k+1时,
| 1 |
| 3 |
| 1 |
| 15 |
| 1 |
| 35 |
| 1 |
| 63 |
| 1 |
| 4k2-1 |
| 1 |
| 4(k+1)2-1 |
=
| k |
| 2k+1 |
| 1 |
| 4(k+1)2-1 |
=
| k |
| 2k+1 |
| 1 |
| (2k+3)(2k+1) |
=
| 2k2+3k+1 |
| (2k+3)(2k+1) |
=
| (k+1)(2k+1) |
| (2k+3)(2k+1) |
=
| k+1 |
| 2(k+1)+1 |
∴当n=k+1时等式也成立.
由①②知等式对任何正整数n都成立.
点评:本题考查数学归纳法,着重考查推理、变形与论证能力,属于中档题.
练习册系列答案
相关题目
已知实数a,b,则a+b>0是a>0且b>0的( )条件.
| A、充分不必要 |
| B、必要不充分 |
| C、充要 |
| D、既不充分也不必要 |