题目内容
已知集合A={0,1,2,3},集合B={x∈N||x|≤2},则A∩B=( )
| A、{3} |
| B、{0,1,2} |
| C、{1,2} |
| D、{0,1,2,3} |
考点:交集及其运算
专题:集合
分析:求出B中不等式的解集,找出解集中的自然数解确定出B,求出A与B的交集即可.
解答:
解:由B中的不等式解得:-2≤x≤2,即B={x|-2≤x≤2,x∈N}={0,1,2},
∵A={0,1,2,3},
∴A∩B={0,1,2},
故选:B.
∵A={0,1,2,3},
∴A∩B={0,1,2},
故选:B.
点评:此题考查了交集及其运算,熟练掌握交集的定义解本题的关键.
练习册系列答案
相关题目
复数z满足(i-2)z=2i-1,则复数z的共轭复数为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
“a<1”是“函数f(x)=x-a在(0,1)上有零点”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
一个几何体的三视图如图所示,则此几何体的表面积为( )

| A、23 | ||
B、
| ||
C、
| ||
| D、16 |
设全集U是实数集R,M={x|x2>1},N={x|0<x<2},则集合N∩∁UM=( )
| A、{x|1<x<2} |
| B、{x|0<x≤1} |
| C、{x|0≤x≤1} |
| D、{x|0<x<1} |
以抛物线y2=20x的焦点为圆心,并与直线y=-
x相切的圆的标准方程是( )
| 3 |
| 4 |
| A、(x-4)2+y2=25 |
| B、(x-5)2+y2=16 |
| C、(x-4)2+y2=7 |
| D、(x-5)2+y2=9 |
已知点A(a,b)与点B(1,0)在直线3x-4y+10=0的两侧,则下列说法中正确的是( )
①3a-4b+10>0
②当a>0时,a+b有最小值,无最大值
③
>2
④当a>0且a≠1时,
的取值范围为(-∞,-
)∪(
,+∞)
①3a-4b+10>0
②当a>0时,a+b有最小值,无最大值
③
| a2+b2 |
④当a>0且a≠1时,
| b |
| a-1 |
| 5 |
| 2 |
| 3 |
| 4 |
| A、①③ | B、③④ | C、②④ | D、②③ |
执行如图所示的程序框图,如果输入s=1,i=2,则输出的s的值为( )

| A、7 | B、8 | C、9 | D、11 |