题目内容

10.A、B是抛物线y2=2px(p>0)上的两点,满足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0(O是原点),求证:
(1)A、B两点的横坐标之积,纵坐标之积均为定值.
(2)直线AB过定点.

分析 (1)OA⊥OB时,设直线AB:x=my+n,代入抛物线方程,可得y2-2pmy-2pn=0,利用OA⊥OB,即可证明A、B两点的横坐标之积为定值;
(2)由(1)知,直线AB:x=my+2p过定点(2p,0).

解答 证明:(1)OA⊥OB时,设直线AB:x=my+n.
代入抛物线方程,可得y2-2pmy-2pn=0,
∵OA⊥OB,
∴x1x2+y1y2=$\frac{({y}_{1}{y}_{2})^{2}}{4{p}^{2}}$+y1y2=0,
∴y1y2=-4p2=-2pn,
∴n=2p,
∴x1x2=4p2
(2)由(1)知,直线AB:x=my+2p过定点(2p,0).

点评 本题考查抛物线方程,考查学生的计算能力,考查直线与抛物线的位置关系,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网