题目内容
1.已知向量$\overrightarrow{m}$=(cosx,sinx)和$\overrightarrow{n}$=($\sqrt{2}$-sinx,cosx),(1)设f(x)=$\overrightarrow{m}•\overrightarrow{n}$,求函数y=f($\frac{π}{3}$-2x)的单调区间;
(2)若x∈[π,2π],求|$\overrightarrow{m}$-$\overrightarrow{n}$|的最大值.
分析 (1)代入数量积公式化简,结合三角函数性质得出;
(2)求出|$\overrightarrow{m}$-$\overrightarrow{n}$|2的表达式并化简,根据x的范围求最大值.
解答 解:(1)f(x)=cosx($\sqrt{2}$-sinx)+sinxcosx=$\sqrt{2}$cosx.∴f($\frac{π}{3}-2x$)=$\sqrt{2}$cos(2x-$\frac{π}{3}$),
令2kπ-π≤2x-$\frac{π}{3}$≤2kπ,解得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
令2kπ≤2x-$\frac{π}{3}$≤2kπ+π,解得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$.
∴函数y=f($\frac{π}{3}$-2x)的单调增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],减区间是[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
(2)$\overrightarrow{m}-\overrightarrow{n}$=(cosx+sinx-$\sqrt{2}$,sinx-cosx),∴|$\overrightarrow{m}$-$\overrightarrow{n}$|2=(cosx+sinx-$\sqrt{2}$)2+(sinx-cosx)2=4-2$\sqrt{2}$(sinx+cosx)=4-4sin(x+$\frac{π}{4}$).
∵x∈[π,2π],∴x+$\frac{π}{4}$∈[$\frac{5π}{4}$,$\frac{9π}{4}$].∴当x+$\frac{π}{4}$=$\frac{3π}{2}$时,|$\overrightarrow{m}$-$\overrightarrow{n}$|2取得最大值8.
∴|$\overrightarrow{m}$-$\overrightarrow{n}$|的最大值是2$\sqrt{2}$.
点评 本题考查了平面向量的应用及三角函数化简求值,属于中档题.
| A. | $\frac{1}{6}$$\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{OB}$+$\frac{1}{3}\overrightarrow{OC}$ | B. | $\frac{1}{4}$($\overline{OA}+\overline{OB}+\overrightarrow{OC}$) | C. | $\frac{1}{3}$($\overline{OA}+\overline{OB}+\overrightarrow{OC}$) | D. | $\frac{1}{3}$$\overrightarrow{OA}+\frac{1}{6}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$ |