题目内容

7.设f(α)=$\frac{sin(α-\frac{13π}{2})•tan(α-3π)}{cos(α+\frac{9π}{2})•tan(\frac{7π}{2}+α)}$.
(1)化简f(α),并求f(-$\frac{67π}{6}$);
(2)若f(α )=$\frac{2}{5}$,求cosα.

分析 (1)利用诱导公式,同角三角函数基本关系式化简函数解析式,进而利用诱导公式,特殊角的三角函数值即可得解.
(2)由f(α )=-tanα=$\frac{2}{5}$,利用同角三角函数基本关系式可求cosα=±$\sqrt{\frac{1}{1+ta{n}^{2}α}}$的值.

解答 解:(1)f(α)=$\frac{sin(α-\frac{13π}{2})•tan(α-3π)}{cos(α+\frac{9π}{2})•tan(\frac{7π}{2}+α)}$=$\frac{(-cosα)tanα}{(-sinα)cotα}$=-tanα,
可得:f(-$\frac{67π}{6}$)=-tan(-$\frac{67π}{6}$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.
(2)∵f(α )=-tanα=$\frac{2}{5}$,可求:tanα=-$\frac{2}{5}$,
∴cosα=±$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=±$\sqrt{\frac{1}{1+\frac{4}{25}}}$=±$\frac{5\sqrt{29}}{29}$.

点评 本题主要考查了诱导公式,同角三角函数基本关系式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网