题目内容

11.如图在三棱锥P-ABC中,PA⊥PB,PA⊥PC,PC⊥PB,PA=1,PB=2,PC=2,则该棱锥外接球的体积为$\frac{9}{2}π$.

分析 以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.算出长方体的对角线即为球直径,结合球的体积公式,可算出棱锥外接球的体积.

解答 解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图
则长方体的外接球同时也是三棱锥P-ABC外接球.
∵长方体的对角线长为$\sqrt{1+4+4}$=3,
∴球直径为3,半径R=$\frac{3}{2}$,
因此,棱锥外接球的体积为$\frac{4}{3}$πR3=$\frac{9}{2}π$.
故答案为:$\frac{9}{2}π$.

点评 本题给出三棱锥的三条侧棱两两垂直,求棱锥外接球的体积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网