题目内容
(2015秋•红河州校级月考)已知全集U=R,A={x|﹣2<x<0},B={x|﹣1≤x≤1},求:
(1)A∪B;
(2)A∩(∁UB).
(2015•南充二模)在平面直角坐标系xOy中,已知圆C:x2+y2﹣6x+5=0,点A,B在圆C上,且AB=2,则|+|的最大值是 .
已知椭圆:的一个焦点为,左右顶点分别为,.经过点的直线与椭圆交于,两点.
(Ⅰ)求椭圆方程;
(Ⅱ)记与的面积分别为和,求的最大值.
(2013秋•成都期中)如图,正方体ABCD﹣A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.
(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.
(2014秋•西山区校级期中)若圆O:x2+y2=4与圆C:x2+y2+4x﹣4y+4=0关于直线l对称,则直线l的方程是 .
(2014秋•芜湖期末)已知函数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集.
(2012•五华县一模)对于任意x,[x]表示不超过x的最大整数,如[1.1]=1,[﹣2.1]=﹣3,定义R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1},则A中所有元素的和为( )
A.55 B.58 C.63 D.65
(2015秋•葫芦岛校级月考)已知函数f(x)=ax﹣1+logax在区间[1,2]上的最大值和最小值之和为a,则实数a为( )
A. B. C.2 D.4
已知偶函数,对任意,恒有.求:
(1),,的值;
(2)的表达式;
(3)在上的最值.