题目内容

设曲线y=x3与直线y=x所围成的封闭区域的面积为S,则下列等式成立的是(  )
A、S=
1
-1
(x3-x)dx
B、S=
1
-1
(x-x3)dx
C、S=
1
0
|x3-x|dx
D、S=2
1
0
(x-x3)dx
考点:定积分的简单应用
专题:导数的概念及应用
分析:作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数x3-x在区间[0,1]上的定积分的值的2倍,再用定积分计算公式加以运算即可得到本题答案.
解答: 解:∵曲线y=x3和曲线y=x的交点为A(1,1)、原点O和B(-1,-1)
∴由定积分的几何意义,可得所求图形的面积为
S=2
1
0
(x-x3)dx

故选:D.
点评:本题求两条曲线围成的曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网