题目内容

19.已知函数f(x)=cosx(2$\sqrt{3}$sinx-cosx)+asin2x的一个零点是$\frac{π}{12}$.
(1)求函数f(x)的最小正周期;
(2)令x∈[-$\frac{π}{6}$,$\frac{π}{4}$],求此时f(x)的最大值和最小值.

分析 (1)将f(x)化简,将($\frac{π}{12}$,0)代入求得a=1,将其化简为f(x)=2sin(2x-$\frac{π}{6}$),求周期,
(2)x∈[-$\frac{π}{6}$,$\frac{π}{4}$],2x-$\frac{π}{6}$∈[$-\frac{π}{2}$,$\frac{π}{3}$],由正弦函数图象求得f(x)的最大值和最小值.

解答 解:(1)f(x)=cosx(2$\sqrt{3}$sinx-cosx)+asin2x=2$\sqrt{3}$sinxcosx-cos2x+asin2x,
=$\sqrt{3}$sin2x-cos2x+asin2x,一个零点是$\frac{π}{12}$,
代入求得a=1,
∴f(x)=2sin(2x-$\frac{π}{6}$),
f(x)的最小正周期为π,
(2)x∈[-$\frac{π}{6}$,$\frac{π}{4}$],2x-$\frac{π}{6}$∈[$-\frac{π}{2}$,$\frac{π}{3}$],
∴f(x)的最大值为$\sqrt{3}$,最小值-2.

点评 本题主要考查两角和差的正弦公式,二倍角公式,正弦函数的单调性的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网