题目内容

2.如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B、P在单位圆上,且B(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$),∠AOB=α.
(1)求$\frac{5cosα+6sinα}{4cosα-3sinα}$的值;
(2)设∠AOP=θ($\frac{π}{6}$≤θ≤$\frac{2π}{3}$),$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$,四边形OAQP的面积为S,f(θ)=($\overrightarrow{OA}$•$\overrightarrow{OQ}$-$\frac{1}{2}$)2+2S2-$\frac{1}{2}$,求f(θ)的最值及此时θ的值.

分析 (1)依题意,可求得tanα=-2,将$\frac{5cosα+6sinα}{4cosα-3sinα}$中的“弦”化“切”即可求得其值;
(2)利用向量的数量积的坐标运算可求得f(θ)=(cosθ+$\frac{1}{2}$)2+2sin2θ-$\frac{1}{2}$=-(cosθ-$\frac{1}{2}$)2+2,利用-$\frac{1}{2}$≤cosθ≤$\frac{\sqrt{3}}{2}$,即可求得f(θ)的最值及此时θ的值.

解答 解:(1)依题意,tanα═-2,
∴$\frac{5cosα+6sinα}{4cosα-3sinα}$=$\frac{5+6tanα}{4-3tanα}$=-$\frac{7}{10}$;
(2)由已知点P的坐标为P(cosθ,sinθ),
又$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$,|$\overrightarrow{OA}$=||$\overrightarrow{OP}$|,
∴四边形OAQP为菱形,
∴S=2S△OAP=sinθ,
∵A(1,0),P(cosθ,sinθ),
∴$\overrightarrow{OQ}$=(1+cosθ,sinθ),
∴$\overrightarrow{OA}$•$\overrightarrow{OQ}$=1+cosθ,
∴f(θ)=(cosθ+$\frac{1}{2}$)2+2sin2θ-$\frac{1}{2}$=-(cosθ-$\frac{1}{2}$)2+2
∵-$\frac{1}{2}$≤cosθ≤$\frac{\sqrt{3}}{2}$,
∴当cosθ=$\frac{1}{2}$,即θ=$\frac{π}{3}$时,f(θ)max=2;
当cosθ=-$\frac{1}{2}$,即θ=$\frac{2π}{3}$时,f(θ)min=1.

点评 本题考查三角函数的最值,着重考查三角函数中的恒等变换应用及向量的数量积的坐标运算,考查正弦函数的单调性及最值,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网