题目内容
15.已知数列{an}的前n项和Sn满足an=1-2Sn.(1)求证:数列{an}为等比数列;
(2)设函数$f(x)={log_{\frac{1}{3}}}x,{b_n}=f({a_1})+f({a_2})+…+f({a_n})$,求Tn=$\frac{1}{b_1}+\frac{1}{b_2}+\frac{1}{b_3}+…+\frac{1}{b_n}$.
分析 (1)数列{an}的前n项和Sn满足an=1-2Sn.可得a1=1-2a1,解得a1.n≥2时,an-1=1-2Sn-1,可得an-an-1=-2an.即可证明.
(2)an=$(\frac{1}{3})^{n}$.f(an)=$lo{g}_{\frac{1}{3}}{a}_{n}$=n.可得bn,$\frac{1}{{b}_{n}}$=2$(\frac{1}{n}-\frac{1}{n+1})$.即可得出.
解答 (1)证明:∵数列{an}的前n项和Sn满足an=1-2Sn.∴a1=1-2a1,解得a1=$\frac{1}{3}$.
n≥2时,an-1=1-2Sn-1,可得an-an-1=-2an.∴${a}_{n}=\frac{1}{3}{a}_{n-1}$.
∴数列{an}为等比数列,公比为$\frac{1}{3}$.
(2)解:an=$(\frac{1}{3})^{n}$.
f(an)=$lo{g}_{\frac{1}{3}}{a}_{n}$=n.
∴bn=1+2+…+n=$\frac{n(n+1)}{2}$.
∴$\frac{1}{{b}_{n}}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
∴Tn=$\frac{1}{b_1}+\frac{1}{b_2}+\frac{1}{b_3}+…+\frac{1}{b_n}$=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.
点评 本题考査了等比数列的通项公式、“裂项求和法”、对数的运算性质,、对数运算性质,考查了推理能力与计算能力,属于中档题.
(Ⅰ)若f(x)在定义域内单调递增,求实数k的值;
(Ⅱ)若f(x)的极小值大于0,求实数k的取值范围.
| A. | a<c<b | B. | a<b<c | C. | c<a<b | D. | c<b<a |
| A. | 2 | B. | 1 | C. | -$\frac{3}{2}$ | D. | 3 |