题目内容
函数f(x)=x3+ax2+bx+a2在x=1时有极值10,则a的值为( )
| A、-3或4 | B、4 |
| C、-3 | D、3或4 |
考点:利用导数研究函数的极值
专题:导数的概念及应用
分析:先对函数f(x)进行求导,然后根据f′(1)=0,f(1)=10可求出a,b的值,再根据函数的单调性进行检验即可确定最后答案.
解答:
解:求导函数,可得f′(x)=3x2+2ax+b
∵函数f(x)=x3+ax2+bx+a2在x=1时有极值10
∴f′(1)=2a+b+3=0,f(1)=a2+a+b+1=10
解得a=-3,b=3或a=4,b=-11,
当a=-3时,f′(x)=3x2-6x+3=3(x-1)2≥0,∴x=1不是极值点
当a=4,b=-11时,f′(x)=3x2+8x-11=(x-1)(3x+11),在x=1的左右附近,导数符号改变,满足题意
∴a=4
故选:B.
∵函数f(x)=x3+ax2+bx+a2在x=1时有极值10
∴f′(1)=2a+b+3=0,f(1)=a2+a+b+1=10
解得a=-3,b=3或a=4,b=-11,
当a=-3时,f′(x)=3x2-6x+3=3(x-1)2≥0,∴x=1不是极值点
当a=4,b=-11时,f′(x)=3x2+8x-11=(x-1)(3x+11),在x=1的左右附近,导数符号改变,满足题意
∴a=4
故选:B.
点评:本题考查函数的极值与其导函数的关系,函数取到极值时一定有导函数等于0,反之不一定成立.
练习册系列答案
相关题目
下列关于函数f(x)=x3-3x2+3(x∈R)的性质叙述错误的是( )
| A、f(x)在区间(0,2)上单调递减 |
| B、f(x)在定义域上没有最大值 |
| C、f(x)在x=0处取最大值3 |
| D、f(x)的图象在点(2,-1)处的切线方程为y=-1 |
设x,y满足x+y=40且x,y都是正数,则xy的最大值是( )
| A、400 | B、100 |
| C、40 | D、20 |
∫
|x2-4|dx=( )
3 0 |
A、
| ||
B、
| ||
C、
| ||
D、
|
函数y=sinx在点(
,
)处的切线方程是( )
| π |
| 3 |
| ||
| 2 |
A、x+2y-
| ||||
B、x+2y+
| ||||
C、x-2y-
| ||||
D、x-2y+
|
已知函数f(x)=xn+1(n∈N*)的图象与直线x=1交于点P,若图象在点P处的切线与x轴交点的横坐标为xn,则log2013x1+log2013x2+…+log2013x2013的值为( )
| A、-1 |
| B、1-log20132012 |
| C、-log20132012 |
| D、1 |
某人将英语单词“apple”记错字母顺序,他可能犯的错误次数最多是(假定错误不重犯)( )
| A、60 | B、59 | C、58 | D、57 |
若等比数列{an}的前n项和为Sn,且S10=18,S20=24,则S40等于( )
A、
| ||
B、
| ||
C、
| ||
D、
|
已知数列{an}为等差数列,Sn为数列{an}的前n项和,S8<S9,S9=S10,S10>S11,则下列结论错误的是( )
| A、d<0 |
| B、S12>S8 |
| C、a10=0 |
| D、S9和S10均为Sn的最大值 |