题目内容
19.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足|$\overrightarrow{b}$|=4|$\overrightarrow{a}$|,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是( )| A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 根据两向量垂直时数量积为0,列出方程求出向量$\overrightarrow{a}$、$\overrightarrow{b}$夹角的余弦值,即可求出夹角的大小.
解答 解:设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,
∵|$\overrightarrow{b}$|=4|$\overrightarrow{a}$|,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),
∴$\overrightarrow{a}$•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=2${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow{b}$=0,
即2${|\overrightarrow{a}|}^{2}$-|$\overrightarrow{a}$|×4|$\overrightarrow{a}$|•cosθ=0,
解得cosθ=$\frac{1}{2}$;
又θ∈[0,π],
∴θ=$\frac{π}{3}$,
即$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{π}{3}$.
故选:A.
点评 本题考查了平面向量的数量积与应用问题,是基础题目.
练习册系列答案
相关题目
14.已知sinα=$\frac{4}{5}$,且tanα<0,则cos(π+α)=( )
| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
11.下列否定不正确的是( )
| A. | “?x∈R,x2>0”的否定是“?x0∈R,x02≤0” | |
| B. | “?x0∈R,x02<0”的否定是“?x∈R,x2<0” | |
| C. | “?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1” | |
| D. | “?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1 |
8.已知直线mx+ny-2=0(mn>0)过点(1,1),则$\frac{1}{m}$+$\frac{1}{n}$有( )
| A. | 最小值4 | B. | 最大值4 | C. | 最小值2 | D. | 最大值2 |