题目内容

已知函数f(x)在(-1,1)上有定义,且f(
1
5
)=
1
2
.对任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
),当且仅当-1<x<0时,f(x)>0.
(1)判断f(x)在(-1,1)上的奇偶性,并说明理由;
(2)判断f(x)在(0,1)上的单调性,并说明理由;
(3)试求f(
1
2
)-f(
1
11
)-f(
1
19
)的值.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:(1)根据函数奇偶性的定义即可判断f(x)在(-1,1)上的奇偶性;
(2)根据函数单调性的定义即可判断f(x)在(0,1)上的单调性;
(3)根据函数奇偶性以及抽象函数之间的关系即可得到结论.
解答: 解:(1)证明:取x=y=0⇒f(0)=0,f(-x)+f(x)=f(0)=0⇒f(-x)=-f (x),又定义域对称,
故f(x)是(-1,1)上的奇函数.
(2)任取x1,x2∈(0,1),且0<x1<x2<1.
f(x2)-f(x1)=f(x2)+f(-x1)=f(
x2-x1
1-x1x2
)=-f(
x1-x2
1-x1x2
  )
∵0<x1<x2<1,
∴(1-x1x2)-(x2-x1)=(1+x1)(1-x2)>0⇒1-x1x2>x2-x1>0⇒0<
x2-x1
1-x1x2
<1,
∴-1<
x1-x2
1-x1x2
<0,
∴f(
x1-x2
1-x1x2
)>0,
∴-f(
x1-x2
1-x1x2
)<0,
即f(x2)<f(x1).
故f(x)是(0,1)上的减函数.
(3)f(
1
2
)-f(
1
11
)=f(
1
2
)+f(-
1
11
)=f (
1
2
-
1
11
1-
1
2
×
1
11
)=f(
3
7
),
∴f(
3
7
)-f(
1
19
)=f(
3
7
-
1
19
1-
3
7
×
1
19
)=f(
5
13
).
而f(
1
5
)+f(
1
5
)=f(
1
5
+
1
5
1-
1
5
×
1
5
)=f(
5
13
)⇒f(
5
13
)=2×f(
1
5
)=1,
∴f(
1
2
)-f(
1
11
)-f(
1
19
)=1.
点评:本题主要考查抽象函数的应用,根据函数奇偶性和单调性的定义是解决本题的关键.综合考查函数的性质的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网