题目内容

4.已知不等式$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≥0对于x∈[-$\frac{π}{3}$,$\frac{π}{3}$]恒成立,则实数m的取值范围是(  )
A.(-∞,-$\sqrt{2}$]B.(-∞,$\frac{\sqrt{2}}{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]D.[$\sqrt{2}$,+∞)

分析 不等式$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≥0对于x∈[-$\frac{π}{3}$,$\frac{π}{3}$]恒成立,等价于不等式($\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$)min≥m对于x∈[-$\frac{π}{3}$,$\frac{π}{3}$]恒成立,令f(x)=$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$,求x∈[-$\frac{π}{3}$,$\frac{π}{3}$]的最小值即可.

解答 解:由题意,令f(x)=$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$,
化简可得:f(x)=$\frac{\sqrt{2}}{2}sin\frac{x}{2}$+$\sqrt{6}$($\frac{1}{2}+\frac{1}{2}$cos$\frac{x}{2}$)$-\frac{\sqrt{6}}{2}$=$\frac{\sqrt{2}}{2}sin\frac{x}{2}+\frac{\sqrt{6}}{2}cos\frac{x}{2}$=$\sqrt{2}$sin($\frac{x}{2}+\frac{π}{3}$)
∵x∈[-$\frac{π}{3}$,$\frac{π}{3}$]
∴$\frac{x}{2}+\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{π}{2}$]
当$\frac{x}{2}+\frac{π}{3}$=$\frac{π}{6}$时,函数f(x)取得最小值为$\frac{\sqrt{2}}{2}$.
∴实数m的取值范围是(-∞,$\frac{\sqrt{2}}{2}$].
故选B.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网