题目内容
9.已知sinα=$\frac{2}{3}$,则sin(2α-$\frac{π}{2}$)=( )| A. | -$\frac{\sqrt{5}}{3}$ | B. | -$\frac{1}{9}$ | C. | $\frac{1}{9}$ | D. | $\frac{\sqrt{5}}{3}$ |
分析 利用诱导公式、二倍角的余弦公式,求得sin(2α-$\frac{π}{2}$)的值.
解答 解:∵sinα=$\frac{2}{3}$,则sin(2α-$\frac{π}{2}$)=-cos2α=-(1-2sin2α)=-1+2•$\frac{4}{9}$=-$\frac{1}{9}$,
故选:B.
点评 本题主要考查诱导公式、二倍角的余弦公式的应用,属于基础题.
练习册系列答案
相关题目
20.对于函数f(x)=$\frac{x-1}{x+1}$,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*,且n≥2),令集合M={x|f2036(x)=x,x∈R},则集合M为( )
| A. | 空集 | B. | 实数集 | C. | 单元素集 | D. | 二元素集 |
4.已知不等式$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≥0对于x∈[-$\frac{π}{3}$,$\frac{π}{3}$]恒成立,则实数m的取值范围是( )
| A. | (-∞,-$\sqrt{2}$] | B. | (-∞,$\frac{\sqrt{2}}{2}$] | C. | [$\frac{\sqrt{2}}{2}$,$\sqrt{2}$] | D. | [$\sqrt{2}$,+∞) |
14.已知函数f(x)=|x+1|-2|x-1|,则不等式f(x)>1的解集为( )
| A. | ($\frac{2}{3}$,2) | B. | ($\frac{1}{3}$,2) | C. | ($\frac{2}{3}$,3) | D. | ($\frac{1}{3}$,3) |
1.数列{an}的前n项和为Sn=4n2-n+2,则该数列的通项公式为( )
| A. | an=8n+5(n∈N*) | B. | an=$\left\{\begin{array}{l}5(n=1)\\ 8n-5(n≥2,n∈{N^*})\end{array}\right.$ | ||
| C. | an=8n+5(n≥2) | D. | an=8n+5(n≥1) |
18.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一个焦点为F,该椭圆上有一点A,满足△OAF是等边三角形(O为坐标原点),则椭圆的离心率是( )
| A. | $\sqrt{3}-1$ | B. | $2-\sqrt{3}$ | C. | $\sqrt{2}-1$ | D. | $2-\sqrt{2}$ |