题目内容

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.3B.2C.$\sqrt{3}$D.1

分析 根据题意,由数量积的计算公式可得$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos60°=$\frac{1}{2}$,进而由向量数量积的运算性质可得|$\overrightarrow{a}$+$\overrightarrow{b}$|2=($\overrightarrow{a}$+$\overrightarrow{b}$)2=|$\overrightarrow{a}$|2+2$\overrightarrow{a}•\overrightarrow{b}$+|$\overrightarrow{b}$|2,计算即可得答案.

解答 解:根据题意,向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,
则$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos60°=$\frac{1}{2}$,
则有|$\overrightarrow{a}$+$\overrightarrow{b}$|2=($\overrightarrow{a}$+$\overrightarrow{b}$)2=|$\overrightarrow{a}$|2+2$\overrightarrow{a}•\overrightarrow{b}$+|$\overrightarrow{b}$|2=3,
则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$;
故选:C.

点评 本题考查向量的数量积、向量的模的计算,关键是掌握向量的模的计算公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网