题目内容

10.函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)一个周期的图象如图所示,则(  )
A.A=2,ω=2,φ=$\frac{3π}{4}$B.A=2,ω=2,φ=$\frac{5π}{4}$C.A=2,ω=$\frac{1}{2}$,φ=$\frac{3π}{4}$D.A=2,ω=$\frac{1}{2}$,φ=$\frac{5π}{4}$

分析 由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得结论.

解答 解:由函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)一个周期的图象,
可得A=2,$\frac{2π}{ω}$=$\frac{7π}{2}$+$\frac{π}{2}$,∴ω=$\frac{1}{2}$.
再根据五点法作图可得$\frac{1}{2}$•$\frac{3π}{2}$+φ=2π,∴φ=$\frac{5π}{4}$,
故选:D.

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网