题目内容

函数y=x+
4
x
(x>0)的递减区间为 (  )
A、(0,4]
B、[2,4]
C、[2,+∞)
D、(0,2]
考点:函数的单调性及单调区间
专题:函数的性质及应用,导数的概念及应用
分析:首先根据函数的关系式求出函数的导数,进一步利用y′<0,求出函数的单调递减区间.
解答: 解:函数y=x+
4
x
(x>0)
则:y′=1-
4
x2
>0

解得:0<x<2
所以函数的递减区间为:(0,2)
故选:D
点评:本题考查的知识要点:函数的导数的应用,利用函数的导数求函数的单调区间.属于基础题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网