题目内容

如图,在三棱锥P-ABC中,已知平面PBC⊥平面ABC.
(1)若AB⊥BC,CP⊥PB,求证:CP⊥PA:
(2)若过点A作直线l上平面ABC,求证:l∥平面PBC.
考点:直线与平面平行的判定,空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:(1)由已知得AB⊥平面PBC,从而CP⊥AB,又CP⊥PB,从而CP⊥平面PAB,由此得到CP⊥PA.
(2)在平面PBC内过点P作PD⊥BC,垂足为D,由已知得PD⊥平面ABC,从而l∥PD,由此能证明l∥平面PBC.
解答: (1)证明:因为平面PBC⊥平面ABC,平面PBC∩平面ABC=BC,
AB?平面ABC,AB⊥BC,所以AB⊥平面PBC. 
因为CP?平面PBC,所以CP⊥AB.
又因为CP⊥PB,且PB∩AB=B,AB,PB?平面PAB,
所以CP⊥平面PAB,
又因为PA?平面PAB,所以CP⊥PA.
(2)证明:在平面PBC内过点P作PD⊥BC,垂足为D.
因为平面PBC⊥平面ABC,
又平面PBC∩平面ABC=BC,PD?平面PBC,所以PD⊥平面ABC.
又l⊥平面ABC,所以l∥PD.
又l?平面PBC,PD?平面PBC,所以l∥平面PBC.
点评:本题考查异面直线垂直的证明,考查直线与平面平行的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网