题目内容

在公差不为0的等差数列{an}中,a3+a10=15,且a2,a5,a11成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1
an
+
1
an+1
+…+
1
a2n-1
,证明:
1
2
≤bn<1.
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件,利用等差数列的通项公式和等比数列的性质,列出方程组,求出等差数列的首项和公差,由此能求出{an}的通项公式.
(Ⅱ)由(Ⅰ)知bn=
1
n+1
+
1
n+2
+…+
1
2n
,所以bn+1-bn=
1
2n+1
-
1
2n+2
>0,由此利用单调性和放缩法能证明
1
2
≤bn<1.
解答: 解:(Ⅰ)设等差数列{an}的公差为d,由已知得
a1+2d+a1+9d=15
(a1+4d)2=(a1+d)(a1+10d)

d≠0,解得a1=2,d=1,
∴an=n+1.
(Ⅱ)由(Ⅰ)知
bn=
1
n+1
+
1
n+2
+…+
1
2n

bn+1=
1
n+2
+
1
n+3
+…+
1
2n+2

∵bn+1-bn=
1
2n+1
+
1
2n+2
-
1
n+1

=
1
2n+1
-
1
2n+2
>0,
∴bn+1>bn.∴bnb1 =
1
2

∵bn=
1
n+1
+
1
n+2
+…+
1
2n

1
n+1
+
1
n+1
+…+
1
n+1
=
n
n+1
<1,
1
2
≤bn<1.
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网