题目内容

2.已知函数f(x)的定义域为R,且f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1]}\\{2-{x}^{2},x∈(-1,0)}\end{array}\right.$,f(x+1)=f(x-1),则方程f(x)=$\frac{2x+1}{x}$在区间[3,-3]上的所有实根之和为(  )
A.-8B.-2C.1D.8

分析 可判断函数f(x)的周期为2,从而化简可得f(x)-2=$\frac{1}{x}$,作函数f(x)-2与y=$\frac{1}{x}$在[-3,3]上的图象,从而结合图象解得.

解答 解:∵f(x+1)=f(x-1),
∴函数f(x)的周期为2,
∵f(x)=$\frac{2x+1}{x}$,
∴f(x)-2=$\frac{1}{x}$,
∵f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1]}\\{2-{x}^{2},x∈(-1,0)}\end{array}\right.$,
∴f(x)-2=$\left\{\begin{array}{l}{{x}^{2},x∈[0,1]}\\{-{x}^{2},x∈(-1,0)}\end{array}\right.$,
作函数f(x)-2与y=$\frac{1}{x}$在[-3,3]上的图象如下,
易知点A与点C关于原点对称,
故方程f(x)=$\frac{2x+1}{x}$在区间[3,-3]上的所有实根之和为1,
故选C.

点评 本题考查了数形结合的思想应用及方程与函数的关系应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网