题目内容

设a,b,c均为正实数
(1)若a+b+c=1,求a2+b2+c2的最小值.
(2)求证:
1
a
+
1
b
+
1
c
2
a+b
+
2
b+c
+
2
c+a
考点:平均值不等式在函数极值中的应用
专题:计算题,证明题,不等式
分析:(1)(法一)a2+b2+c2+2(ab+bc+ac)=1,结合
a2+b2≥2ab
b2+c2≥2bc
a2+c2≥2ac
,可求出a2+b2+c2
1
3
,(当且仅当a=b=c=
1
3
时,等号成立);
(法二)由柯西不等式可得,(1+1+1)(a2+b2+c2)≥(a+b+c)2=1;
(2)化
1
a
+
1
b
+
1
c
=
1
2
[(
1
a
+
1
b
)+(
1
b
+
1
c
)+(
1
a
+
1
c
)]=
1
2
a+b
ab
+
b+c
bc
+
a+c
ac
),由ab≤(
a+b
2
)2
,bc≤(
b+c
2
)2
,ac≤(
c+a
2
)2
推导证明.
解答: 证明:(1)(法一)∵a+b+c=1,
∴(a+b+c)2=1,
即a2+b2+c2+2(ab+bc+ac)=1,
又∵
a2+b2≥2ab
b2+c2≥2bc
a2+c2≥2ac

∴a2+b2+c2≥ab+bc+ac,
∴3(a2+b2+c2)≥1,
∴a2+b2+c2
1
3

(当且仅当a=b=c=
1
3
时,等号成立),
故a2+b2+c2的最小值为
1
3

(法二)由柯西不等式可得,
(1+1+1)(a2+b2+c2)≥(a+b+c)2=1,
即a2+b2+c2
1
3

故a2+b2+c2的最小值为
1
3

(2)证明:
1
a
+
1
b
+
1
c
=
1
2
[(
1
a
+
1
b
)+(
1
b
+
1
c
)+(
1
a
+
1
c
)]
=
1
2
a+b
ab
+
b+c
bc
+
a+c
ac

∵ab≤(
a+b
2
)2
,bc≤(
b+c
2
)2
,ac≤(
c+a
2
)2

1
2
a+b
ab
+
b+c
bc
+
a+c
ac

1
2
4
a+b
+
4
b+c
+
4
a+c

=
2
a+b
+
2
b+c
+
2
c+a

1
a
+
1
b
+
1
c
2
a+b
+
2
b+c
+
2
c+a
点评:本题考查了不等式的应用,应用了基本不等式与柯西不等式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网