题目内容
13.下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是( )| A. | f(x)=(x-1)2 | B. | f(x)=ex | C. | f(x)=$\frac{1}{x}$ | D. | f(x)=ln(x+1) |
分析 由减函数的定义便知,f(x)满足的条件为:在(0,+∞)上单调递减,从而根据二次函数、指数函数、反比例函数,以及对数函数的单调性便可判断每个选项的函数在(0,+∞)上的单调性,从而找出正确选项.
解答 解:根据条件知,f(x)需满足在(0,+∞)上单调递减;
A.f(x)=(x-1)2在(1,+∞)上单调递增,∴该函数不满足条件;
B.f(x)=ex在(0,+∞)上单调递增,不满足条件;
C.反比例函数$f(x)=\frac{1}{x}$在(0,+∞)上单调递减,满足条件,即该选项正确;
D.f(x)=ln(x+1)在(0,+∞)上单调递增,不满足条件.
故选C.
点评 考查减函数的定义,以及二次函数、指数函数、反比例函数和对数函数的单调性的判断.
练习册系列答案
相关题目
8.以(-3,0)和(3,0)为焦点,长轴长为8的椭圆方程为( )
| A. | $\frac{x^2}{16}+\frac{y^2}{25}=1$ | B. | $\frac{x^2}{16}+\frac{y^2}{7}=1$ | C. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{7}+\frac{y^2}{16}=1$ |
5.若全集U=R,集合A={x|x2+4x+3>0},B={x|log3(2-x)≤1},则∁U(A∩B)=( )
| A. | {x|x<-1或x>2} | B. | {x|x<-1或x≥2} | C. | {x|x≤-1或x>2} | D. | {x|x≤-1或x≥2} |
3.对于平面α和两条直线m,n,下列命题中真命题是( )
| A. | 若m⊥α,m⊥n,则n∥α | B. | 若m∥α,n∥α,则m∥n | ||
| C. | 若m,n与α所成的角相等,则m∥n | D. | 若m?α,m∥n,且n在平面α外,则n∥α |