题目内容

将函数f(x)=sinωx(其中ω>0)的图象向右平移
π
4
个单位长度,所得图象经过点(
4
,0),则ω的最小值是
 
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:首先利用三角函数的图象平移得到y=sinω(x-
π
4
),代入点(
4
,0)后得到sin
π
2
ω=0,由此可得ω的最小值.
解答: 解:将函数y=sinωx(其中ω>0)的图象向右平移
π
4
个单位长度,
所得图象对应的函数为y=sinω(x-
π
4
).
再由所得图象经过点(
4
,0),可得sinω(
4
-
π
4
)=sin
π
2
ω=0,
π
2
ω=kπ,k∈z.
故ω的最小值是2.
故答案为:2.
点评:本题考查了三角函数的图象平移,考查了三角函数奇偶性的性质,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网