ÌâÄ¿ÄÚÈÝ
12£®ÏÂÁÐËĸöÃüÌâÖУ¬¼ÙÃüÌâÊǢܣ¨ÌîÐòºÅ£©£®¢Ù¾¹ý¶¨µãP£¨x0£¬y0£©µÄÖ±Ïß²»Ò»¶¨¶¼¿ÉÒÔÓ÷½³Ìy-y0=k£¨x-x0£©±íʾ£»
¢Ú¾¹ýÁ½¸ö²»Í¬µÄµãP1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©µÄÖ±Ïß¶¼¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£»
¢ÛÓëÁ½Ìõ×ø±êÖá¶¼ÏཻµÄÖ±Ïß²»Ò»¶¨¿ÉÒÔÓ÷½³Ì$\frac{x}{a}$+$\frac{y}{b}$=1±íʾ£»
¢Ü¾¹ýµãQ£¨0£¬b£©µÄÖ±Ïß¶¼¿ÉÒÔ±íʾΪy=kx+b£®
·ÖÎö ¢Ù£¬¾¹ý¶¨µãP£¨x0£¬y0£©Ð±Âʲ»´æÔÚµÄÖ±Ïß²»¿ÉÒÔÓ÷½³Ìy-y0=k£¨x-x0£©±íʾ£»
¢Ú£¬µ±x1¡Ùx2ʱ£¬¼´Ð±ÂÊ´æÔÚ¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£¬µ±x1=x2ʱ£¬Ö±Ïß·½³ÌΪx=x1£¬¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£»
¢Û£¬µ±Ö±Ïß¹ýÔµãʱ£¬Ö±Ïß²»¿ÉÒÔÓ÷½³Ì$\frac{x}{a}$+$\frac{y}{b}$=1±íʾ£»
¢Ü£¬¾¹ýµãQ£¨0£¬b£©µÄÖ±Ïߣ¬µ±Ð±Âʲ»´æÔÚʱ£¬²»¿ÉÒÔ±íʾΪy=kx+b£®
½â´ð ½â£º¶ÔÓÚ¢Ù£¬¾¹ý¶¨µãP£¨x0£¬y0£©Ð±Âʲ»´æÔÚµÄÖ±Ïß²»¿ÉÒÔÓ÷½³Ìy-y0=k£¨x-x0£©±íʾ£¬¹Ê¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬¾¹ýÁ½¸ö²»Í¬µÄµãP1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©µÄÖ±ÏßÓÐÁ½ÖÖÇé¿ö£ºµ±x1¡Ùx2ʱ£¬¼´Ð±ÂÊ´æÔÚ¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£¬µ±x1=x2ʱ£¬Ö±Ïß·½³ÌΪx=x1£¬¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£¬¹Ê¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬µ±Ö±Ïß¹ýÔµãʱ£¬Ö±Ïß²»¿ÉÒÔÓ÷½³Ì$\frac{x}{a}$+$\frac{y}{b}$=1±íʾ£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬¾¹ýµãQ£¨0£¬b£©µÄÖ±Ïߣ¬µ±Ð±Âʲ»´æÔÚʱ£¬²»¿ÉÒÔ±íʾΪy=kx+b£¬¹Ê¢Ü´íÎó£®
¹Ê´ð°¸Îª£º¢Ü£®
µãÆÀ ±¾Ì⿼²éÁËÃüÌâÕæ¼ÙµÄÅж¨£¬Éæ¼°µ½ÁËÖ±Ïß·½³ÌµÄ±í´ïʽ£¬ÊôÓÚÖеµÌ⣮
| A£® | {x|0£¼x£¼1} | B£® | {x|-1¡Üx¡Ü2} | C£® | {x|-1£¼x£¼2} | D£® | {x|0¡Üx¡Ü1} |
| A£® | $-\frac{1}{2}$ | B£® | $\frac{1}{2}$ | C£® | -2 | D£® | 1 |