题目内容
15.| A. | 10+2π | B. | 12+3π | C. | 20+4π | D. | 16+5π |
分析 由三视图知几何体是上部为半圆柱体,下部为长方体的组合体,结合图中数据求出它的表面积.
解答 解:由三视图知,
该几何体是上部为半圆柱体,下部为长方体的组合体,
其表面积为
S=S长方体+S半圆柱
=(1×2×2+2×1×2+22)+(π•12+π•1•2)
=12+3π.
故选:B.
点评 本题主要考查了利用三视图求几何体表面积的应用问题,是基础题.
练习册系列答案
相关题目
5.方程${2^{{{log}_3}x}}=\frac{1}{4}$的解为( )
| A. | 9 | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{9}$ |
6.某校为了解学生对正在进行的一项教学改革的态度,从500名高一学生和400名高二学生中按分层抽样的方式抽取了45名学生进行问卷调查,结果可以分成以下三类:支持、反对、无所谓,调查结果统计如下:
(1)(i)求出表中的x,y的值;
(ii)从反对的同学中随机选取2人进一步了解情况,求恰好高一、高二各1人的概率;
(2)根据表格统计的数据,完成下面的2×2的列联表,并判断是否有90%的把握认为持支持与就读年级有关.(不支持包括无所谓和反对)
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 支持 | 无所谓 | 反对 | |
| 高一年级 | 18 | x | 2 |
| 高二年级 | 10 | 6 | y |
(ii)从反对的同学中随机选取2人进一步了解情况,求恰好高一、高二各1人的概率;
(2)根据表格统计的数据,完成下面的2×2的列联表,并判断是否有90%的把握认为持支持与就读年级有关.(不支持包括无所谓和反对)
| 高一年级 | 高二年级 | 总计 | |
| 支持 | |||
| 不支持 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.01 |
| k0 | 2.706 | 3.841 | 6.635 |
10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>1}\\{(\frac{1}{2})^{x},x≤1}\end{array}\right.$,则f(f(-$\frac{1}{2}$))=( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
7.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的焦点到其渐近线的距离为( )
| A. | 2 | B. | 3 | C. | $\sqrt{3}$ | D. | 4 |