题目内容
3.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;
(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.
分析 (1)设“至少1名倾向于选择实体店”为事件A,则$\overline{A}$表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1-P$(\overline{A})$.
(2)X的取值为0,1,2,3.P(X=k)=$\frac{{∁}_{3}^{k}{∁}_{7}^{3-k}}{{∁}_{10}^{3}}$,即可得出.
解答 解:(1)设“至少1名倾向于选择实体店”为事件A,
则$\overline{A}$表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,
则P(A)=1-P$(\overline{A})$=1-$\frac{{∁}_{3}^{1}×{∁}_{2}^{1}}{{∁}_{5}^{1}×{∁}_{5}^{1}}$=$\frac{19}{25}$.
(2)X的取值为0,1,2,3.P(X=k)=$\frac{{∁}_{3}^{k}{∁}_{7}^{3-k}}{{∁}_{10}^{3}}$,
P(X=0)=$\frac{7}{24}$,P(X=1)=$\frac{21}{40}$,P(X=2)=$\frac{7}{40}$,P(X=3)=$\frac{1}{120}$.
E(X)=0×$\frac{7}{24}$+1×$\frac{21}{40}$+2×$\frac{7}{40}$+3×$\frac{1}{120}$=$\frac{9}{10}$.
点评 本题考查了对立与互相独立事件概率计算公式、超几何分布列与数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
13.
某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
表中的数据显示,与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
| 广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
| 销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
11.若f(x)=ex+sinx-cosx的导数为f'(x),则f'(0)等于( )
| A. | 2 | B. | ln2+1 | C. | ln2-1 | D. | ln2+2 |
18.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x-2017)3f(x-2017)-27>0的解集为( )
| A. | (2014,+∞) | B. | (0,2014) | C. | (0,2020) | D. | (2020,+∞) |
8.已知集合A={x|$\frac{1-x}{1+x}$>0},B={x|lg(x+9)<1},则A∩B=( )
| A. | (-1,1) | B. | (-∞,1) | C. | {0} | D. | {-1,0,1} |
15.
如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中曲线部分是圆弧,则此几何体的表面积为( )
| A. | 10+2π | B. | 12+3π | C. | 20+4π | D. | 16+5π |
12.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a-2)2=1,点A(0,3),若圆C上存在点M,满足|MA|=2|MO|(O为坐标原点),则实数a的取值范围是( )
| A. | [-3,0] | B. | (-∞,-3]∪[0,+∞) | C. | [0,3] | D. | (-∞,0]∪[3,+∞) |