题目内容
已知数列{an}满足:a1=1,a2=
,且nan+1-(n-1)an=anan+1.(n≥2,n∈N+)
(1)求数列{an}的通项公式;
(2)证明:对一切n∈N+有a12+22+…+an2<
.
| 1 |
| 4 |
(1)求数列{an}的通项公式;
(2)证明:对一切n∈N+有a12+22+…+an2<
| 7 |
| 6 |
考点:数列的求和,数列递推式
专题:点列、递归数列与数学归纳法
分析:(1)由nan+1-(n-1)an=anan+1(n≥2,n∈N+),可得
-
=1,所以
-
=
,即
=
-
,进一步整理,求出数列{an}的通项公式即可;
(2)当n≥2时,an2=
=
<
=
=
(
-
),据此可证得,对一切n∈N+有a12+22+…+an2<
.
| n |
| an |
| n-1 |
| an+1 |
| 1 |
| (n-1)an |
| 1 |
| nan+1 |
| 1 |
| (n-1)n |
| 1 |
| nan+1 |
| 1 |
| (n-1)an |
| 1 |
| n(n-1) |
(2)当n≥2时,an2=
| 1 |
| (3n-2)2 |
| 1 |
| 9n2-12n+4 |
| 1 |
| 9n2-15n+4 |
| 1 |
| (3n-4)(3n-1) |
| 1 |
| 3 |
| 1 |
| 3n-4 |
| 1 |
| 3n-1 |
| 7 |
| 6 |
解答:
解:(1)由nan+1-(n-1)an=anan+1(n≥2,n∈N+),
可得
-
=1,
所以
-
=
,
即
=
-
,
整理,得
-
=
-
,
即当n≥2时,有
-
=
-
=…=
-
=3,
解得an=
(n≥2),
当n=1时,上式也成立,
所以an=
;
(2)∵当n≥2时,an2=
=
<
=
=
(
-
),
∴当n≥2时,a12+22+…+an2<1+
(
-
+
-
+…+
-
)
=1+
(
-
)<1+
×
=
,
当n=1时,a12=1<
,
综上,可得对一切n∈N+有a12+22+…+an2<
.
可得
| n |
| an |
| n-1 |
| an+1 |
所以
| 1 |
| (n-1)an |
| 1 |
| nan+1 |
| 1 |
| (n-1)n |
即
| 1 |
| nan+1 |
| 1 |
| (n-1)an |
| 1 |
| n(n-1) |
整理,得
| 1 |
| nan+1 |
| 1 |
| n |
| 1 |
| (n-1)an |
| 1 |
| n-1 |
即当n≥2时,有
| 1 |
| (n-1)an |
| 1 |
| n-1 |
| 1 |
| (n-2)an-1 |
| 1 |
| n-2 |
| 1 |
| a2 |
| 1 |
| 1 |
解得an=
| 1 |
| 3n-2 |
当n=1时,上式也成立,
所以an=
| 1 |
| 3n-2 |
(2)∵当n≥2时,an2=
| 1 |
| (3n-2)2 |
| 1 |
| 9n2-12n+4 |
<
| 1 |
| 9n2-15n+4 |
| 1 |
| (3n-4)(3n-1) |
| 1 |
| 3 |
| 1 |
| 3n-4 |
| 1 |
| 3n-1 |
∴当n≥2时,a12+22+…+an2<1+
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 3n-4 |
| 1 |
| 3n-1 |
=1+
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3n-1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 7 |
| 6 |
当n=1时,a12=1<
| 7 |
| 6 |
综上,可得对一切n∈N+有a12+22+…+an2<
| 7 |
| 6 |
点评:本题主要考查了数列的通项公式以及前n项和公式的运用,考查了数列的递推式,属于中档题.
练习册系列答案
相关题目