题目内容

已知数列{an}满足:a1=1,a2=
1
4
,且nan+1-(n-1)an=anan+1.(n≥2,n∈N+
(1)求数列{an}的通项公式;
(2)证明:对一切n∈N+有a12+22+…+an2
7
6
考点:数列的求和,数列递推式
专题:点列、递归数列与数学归纳法
分析:(1)由nan+1-(n-1)an=anan+1(n≥2,n∈N+),可得
n
an
-
n-1
an+1
=1
,所以
1
(n-1)an
-
1
nan+1
=
1
(n-1)n
,即
1
nan+1
=
1
(n-1)an
-
1
n(n-1)
,进一步整理,求出数列{an}的通项公式即可;
(2)当n≥2时,an2=
1
(3n-2)2
=
1
9n2-12n+4
1
9n2-15n+4
=
1
(3n-4)(3n-1)
=
1
3
(
1
3n-4
-
1
3n-1
)
,据此可证得,对一切n∈N+有a12+22+…+an2
7
6
解答: 解:(1)由nan+1-(n-1)an=anan+1(n≥2,n∈N+),
可得
n
an
-
n-1
an+1
=1

所以
1
(n-1)an
-
1
nan+1
=
1
(n-1)n

1
nan+1
=
1
(n-1)an
-
1
n(n-1)

整理,得
1
nan+1
-
1
n
=
1
(n-1)an
-
1
n-1

即当n≥2时,有
1
(n-1)an
-
1
n-1
=
1
(n-2)an-1
-
1
n-2
=…=
1
a2
-
1
1
=3

解得an=
1
3n-2
(n≥2)

当n=1时,上式也成立,
所以an=
1
3n-2

(2)∵当n≥2时,an2=
1
(3n-2)2
=
1
9n2-12n+4

1
9n2-15n+4
=
1
(3n-4)(3n-1)
=
1
3
(
1
3n-4
-
1
3n-1
)


∴当n≥2时,a12+22+…+an2<1+
1
3
(
1
2
-
1
5
+
1
5
-
1
8
+…+
1
3n-4
-
1
3n-1
)

=1+
1
3
(
1
2
-
1
3n-1
)
<1+
1
3
×
1
2
=
7
6

当n=1时,a12=1<
7
6

综上,可得对一切n∈N+有a12+22+…+an2
7
6
点评:本题主要考查了数列的通项公式以及前n项和公式的运用,考查了数列的递推式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网