题目内容

已知
3
+tanθ
1-tanθ
=1+2
3
,则sin2θ+sin2θ的值为
 
考点:同角三角函数基本关系的运用,二倍角的正弦
专题:三角函数的求值
分析:已知等式变形求出tanθ的值,原式分母看做“1”,利用同角三角函数间基本关系化简后,将tanθ的值代入计算即可求出值.
解答: 解:已知等式变形得:
3
+tanθ=(1-tanθ)(1+2
3
),
整理得:tanθ=
1+
3
2(1+
3
)
=
1
2

则原式=
sin2θ+2sinθcosθ
sin2θ+cos2θ
=
tan2θ+2tanθ
tan2θ+1
=
1
4
+2×
1
2
1
4
+1
=1.
故答案为:1
点评:此题考查了同角三角函数基本关系的运用,以及二倍角的正弦函数公式,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网