题目内容

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1与抛物线y2=-4x的焦点重合,椭圆E的离心率为$\frac{\sqrt{2}}{2}$,过点M(m,0)(m>$\frac{3}{4}$)做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PC}$为定值.
(1)求椭圆E的方程;
(2)过点M且垂直于l的直线与椭圆E交于B,D两点,求四边形ABCD面积的最小值.

分析 (1)抛物线y2=-4x的焦点为(-1,0),可得c=1,又$\frac{c}{a}=\frac{\sqrt{2}}{2}$,a2=b2+c2,联立解出即可得出.
(2)设直线l的方程为:ty+m=x,A(x1,y1),C(x2,y2).与椭圆方程联立化为:(t2+2)y2+2tmy+m2-2=0.把根与系数的关系代入$\overrightarrow{PA}$•$\overrightarrow{PC}$=$({x}_{1}-\frac{5}{4})$$({x}_{2}-\frac{5}{4})$+y1y2=$(mt-\frac{5}{4}t)$(y1+y2)+(t2+1)y1•y2+$(m-\frac{5}{4})^{2}$=$\frac{-\frac{7}{16}{t}^{2}+3{m}^{2}-5m+\frac{9}{8}}{{t}^{2}+2}$为定值.可得$\frac{3{m}^{2}-5m+\frac{9}{8}}{-\frac{7}{16}}$=$\frac{2}{1}$,解得m=1.可得|AC|=$\sqrt{(1+{t}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$=$\frac{2\sqrt{2}({t}^{2}+1)}{{t}^{2}+2}$,把$\frac{1}{t}$代换t可得:|BD|=$\frac{2\sqrt{2}(1+{t}^{2})}{1+2{t}^{2}}$.利用S四边形ABCD=$\frac{1}{2}$|AC|•|BD|与二次函数的单调性即可得出.

解答 解:(1)抛物线y2=-4x的焦点为(-1,0),∴F1(1,0),∴c=1,又$\frac{c}{a}=\frac{\sqrt{2}}{2}$,a2=b2+c2
解得c=1=b,a2=2.
∴椭圆E的方程为:$\frac{{x}^{2}}{2}$+y2=1.
(2)设直线l的方程为:ty+m=x,A(x1,y1),C(x2,y2).
联立$\left\{\begin{array}{l}{ty+m=x}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,化为:(t2+2)y2+2tmy+m2-2=0.
△>0,∴y1+y2=$\frac{-2tm}{{t}^{2}+2}$,y1•y2=$\frac{{m}^{2}-2}{{t}^{2}+2}$.
$\overrightarrow{PA}$•$\overrightarrow{PC}$=$({x}_{1}-\frac{5}{4})$$({x}_{2}-\frac{5}{4})$+y1y2=$(t{y}_{1}+m-\frac{5}{4})$$(t{y}_{2}+m-\frac{5}{4})$+y1•y2
=$(mt-\frac{5}{4}t)$(y1+y2)+(t2+1)y1•y2+$(m-\frac{5}{4})^{2}$
=$(mt-\frac{5}{4}t)$$\frac{-2tm}{{t}^{2}+2}$+(t2+1)$\frac{{m}^{2}-2}{{t}^{2}+2}$+$(m-\frac{5}{4})^{2}$=$\frac{-\frac{7}{16}{t}^{2}+3{m}^{2}-5m+\frac{9}{8}}{{t}^{2}+2}$为定值.
∴$\frac{3{m}^{2}-5m+\frac{9}{8}}{-\frac{7}{16}}$=$\frac{2}{1}$,化为:3m2-5m+2=0,$m>\frac{3}{4}$,解得m=1.
∴M(1,0).
∴y1+y2=$\frac{-2t}{{t}^{2}+2}$,y1•y2=$\frac{-1}{{t}^{2}+2}$.
∴|AC|=$\sqrt{(1+{t}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$=$\sqrt{(1+{t}^{2})[\frac{4{t}^{2}}{({t}^{2}+2)^{2}}-\frac{-4}{{t}^{2}+2}]}$=$\frac{2\sqrt{2}({t}^{2}+1)}{{t}^{2}+2}$,
把$\frac{1}{t}$代换t可得:|BD|=$\frac{2\sqrt{2}(1+{t}^{2})}{1+2{t}^{2}}$.
∴S四边形ABCD=$\frac{1}{2}$|AC|•|BD|=$\frac{1}{2}$×$\frac{2\sqrt{2}({t}^{2}+1)}{{t}^{2}+2}$×$\frac{2\sqrt{2}(1+{t}^{2})}{1+2{t}^{2}}$=$\frac{4({t}^{2}+1)^{2}}{({t}^{2}+2)(1+2{t}^{2})}$,
令t2+1=k>1,则f(k)=$\frac{4{k}^{2}}{(k+1)(2k-1)}$=$\frac{4{k}^{2}}{2{k}^{2}+k-1}$=$\frac{4}{2+\frac{1}{k}-\frac{1}{{k}^{2}}}$=$\frac{4}{\frac{9}{4}-(\frac{1}{k}-\frac{1}{2})^{2}}$≥$\frac{16}{9}$,
当$\frac{1}{k}$=$\frac{1}{2}$,即k=2,t=±1时取等号.
∴四边形ABCD面积的最小值为$\frac{16}{9}$.

点评 本题考查了椭圆与抛物线的标准方程及其性质、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、数量积运算性质、四边形面积计算公式、二次函数的单调性、换元法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网