题目内容
下列代数式(其中k∈N*)能被9整除的是( )
A.6+6·7k B.2+7k-1
C.2(2+7k+1) D.3(2+7k)
D
已知a,b>0,求证:
一切奇数都不能被2整数,2100+1是奇数,所以2100+1不能被2整除,其演绎“三段论”的形式为:
大前提:一切奇数都不能被2整除,
小前提:________________________________________________________________________,
结论:________________________________________________________________________.
α,β,γ是三个平面,a,b是两条直线,有下列三个条件:
①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.
如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题.(填序号)
已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点.若f(c)=0,且0<x<c时,f(x)>0.
(1)证明:是函数f(x)的一个零点;
(2)试比较与c的大小.
是否存在常数a,b,c使得等式1·22+2·32+…+n(n+1)2= (an2+bn+c)对于一切正整数n都成立?并证明你的结论.
正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )
A.20 B.15
C.12 D.10
某三棱锥的三视图如图所示,该三棱锥的表面积是( )
A.28+6 B.30+6
C.56+12 D.60+12
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.
(1)求证:DE∥平面BCP;
(2)求证:四边形DEFG为矩形;
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.