题目内容

若函数f(x)=(x-1)(x-3)+(x-3)(x-4)+(x-4)(x-1),则函数f(x)的两个零点分别位于区间(  )
A、(1,3)和(3,4)内
B、(-∞,1)和(1,3)内
C、(3,4)和(4,+∞)内
D、(-∞,1)和(4,+∞)内
考点:函数零点的判定定理
专题:计算题,函数的性质及应用
分析:由f(x)=(x-1)(x-3)+(x-3)(x-4)+(x-4)(x-1)可求f(1)、f(3)、f(4);从而确定函数的零点的区间.
解答: 解:∵f(x)=(x-1)(x-3)+(x-3)(x-4)+(x-4)(x-1),
∴f(1)=(-2)×(-3)=6>0,
f(3)=(3-4)(3-1)=-2<0,
f(4)=(4-1)(4-3)=3>0;
故f(1)f(3)<0,f(3)f(4)<0;
故函数f(x)的两个零点分别位于区间(1,3)和(3,4)内;
故选A.
点评:本题考查了函数的零点的判定定理的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网