题目内容
11.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是[$\frac{3}{2e}$,1).分析 设g(x)=ex(2x-1),y=ax-a,则存在唯一的整数x0,使得g(x0)在直线y=ax-a的下方,由此利用导数性质能求出a的取值范围.
解答
解:函数f(x)=ex(2x-1)-ax+a,其中a<1,
设g(x)=ex(2x-1),y=ax-a,
∵存在唯一的整数x0,使得f(x0)<0,
∴存在唯一的整数x0,使得g(x0)在直线y=ax-a的下方,
∵g′(x)=ex(2x+1),
∴当x<-$\frac{1}{2}$时,g′(x)<0,
∴当x=-$\frac{1}{2}$时,[g(x)]min=g(-$\frac{1}{2}$)=-2e${\;}^{-\frac{1}{2}}$.
当x=0时,g(0)=-1,g(1)=e>0,
直线y=ax-a恒过(1,0),斜率为a,故-a>g(0)=-1,
且g(-1)=-3e-1≥-a-a,解得$\frac{3}{2e}≤a<1$.
∴a的取值范围是[$\frac{3}{2e}$,1).
故答案为:[$\frac{3}{2e}$,1).
点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关题目
18.已知A(0,-2),B(3,2)是函数f(x)图象上的两点,且f(x)是R上的增函数,则|f(x)|<2的解集为( )
| A. | (1,4) | B. | (-1,2) | C. | (0,3) | D. | (3,4) |
19.已知复数z满足z=$\frac{4+3i}{1+2i}$,则z=( )
| A. | 2+i | B. | 2-i | C. | 1+2i | D. | 1-2i |
6.将函数$f(x)=3sin(ωx-\frac{π}{5})(ω>0)$的图象向左平移$\frac{π}{5ω}$个单位,得到函数y=g(x)的图象,若y=g(x)在$[0,\frac{π}{4}]$上为增函数,则ω的最大值为( )
| A. | 2 | B. | $\frac{π}{5}$ | C. | 3 | D. | $\frac{2π}{5}$ |
3.已知α角的终边过点(-1,$\sqrt{3}$),则tanα=( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
20.在正方体ABCD-A1B1C1D1中,($\overrightarrow{{A}_{1}{D}_{1}}$-$\overrightarrow{{A}_{1}A}$)-$\overrightarrow{AB}$=( )
| A. | $\overrightarrow{{D}_{1}A}$ | B. | $\overrightarrow{A{D}_{1}}$ | C. | $\overrightarrow{B{D}_{1}}$ | D. | $\overrightarrow{{D}_{1}B}$ |