题目内容

7.在△ABC中,内角A,B,C所对的边分别为a,b,c且2a cosC-c=2b.
(Ⅰ)求角A的大小;
(Ⅱ)若c=$\sqrt{2}$,角B的平分线BD=$\sqrt{3}$,求∠ADB和BC.

分析 (Ⅰ)根据正弦定理和两角和的正弦公式即可得到cosA=-$\frac{1}{2}$,问题得以解决,
(Ⅱ)根据正弦定理和余弦定理即可求出答案.

解答 解:(Ⅰ)2acosC-c=2b⇒2sinAcosC-sinC=2sinB,
2sinAcosC-sinC=2sin(A+C)=2sinAcosC+2cosAsinC⇒-sinC=2cosAsinC,
∵sinC≠0,
∴$cosA=-\frac{1}{2}$,
而A∈(0,π),
∴$A=\frac{2π}{3}$;
(Ⅱ)在△ABD中,由正弦定理得,$\frac{AB}{sin∠ADB}=\frac{BD}{sinA}⇒sin∠ADB=\frac{AB•sinA}{BD}=\frac{{\sqrt{2}}}{2}$
∴$∠ADB=\frac{π}{4}$,
∴$∠ABC=\frac{π}{6},∠ACB=\frac{π}{6},AC=AB=\sqrt{2}$
由余弦定理,$a=BC=\sqrt{A{B^2}+A{C^2}-2AB•AC•cosA}=\sqrt{6}$.

点评 本题考查了正弦定理和余弦定理和两角和正弦公式,考查了学生的运算能力,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网