题目内容
已知椭圆的左焦点和右焦点,上顶点为,的中垂线交椭圆于点,若左焦点在线段上,则椭圆离心率为 .
给出定义在上的三个函数:,已知在处取最值.
(1)确定函数的单调性;
(2)求证:当时,恒有成立;
(3)把函数的图象向上平移6个单位得到函数,试确定函数的零点个数,并说明理由.
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B-PC-A的正切值.
若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于( ).
A.-1 B.-2 C.2 D.0
如图,在直三棱柱中,,点分别为的中点.
(1)求证:平面;
(2)若点是线段上一点且满足,求证:∥平面.
根据如图所示的伪代码,最后输出的i的值为 .
椭圆M:的焦距为,点关于直线的对称点在椭圆上.
(1)求椭圆M的方程;
(2)如图,椭圆M的上、下顶点分别为A,B,过点P的直线与椭圆M相交于两个不同的点C,D.
①求的取值范围;
②当与相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.
已知集合,,且,则实数a的值为 .
设,,则与的大小关系是( )
A. B. C. D.