题目内容

设函数y=f(x)的反函数是y=g(x),如果f(ab)=f(a)+f(b),则有(  )
A、g(ab)=g(a)•g(b)
B、g(a+b)=g(a)+g(b)
C、g(a+b)=g(a)•g(b)
D、g(ab)=g(a)+g(b)
考点:抽象函数及其应用,反函数
专题:函数的性质及应用
分析:由函数y=f(x)的反函数是y=g(x),可得当f(a)=m,f(b)=n时,g(m)=a,g(n)=b,进而由f(ab)=f(a)+f(b)可得g(m)•g(n)=g(m+n),
以a、b分别代替上式中的m、n后可得答案.
解答: 解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,
∴g(m)=a,g(n)=b,
从而m+n=f(a)+f(b)=f(ab)=f[g(m)•g(n)],
∴g(m)•g(n)=g(m+n),
以a、b分别代替上式中的m、n即得g(a+b)=g(a)•g(b).
故选:C
点评:本题考查的知识点是反函数,其中根据函数y=f(x)的反函数是y=g(x)得到:当f(a)=m,f(b)=n时,g(m)=a,g(n)=b是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网