题目内容

9.已知O是锐角三角形ABC的外接圆圆心,tanA=$\frac{1}{2}$,$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=2m$\overrightarrow{AO}$,则m=$\frac{{2\sqrt{5}}}{5}$.

分析 取AB的中点D,则$\overrightarrow{AO}$=$\overrightarrow{AD}$+$\overrightarrow{DO}$,从而可得$\frac{cosB}{sinC}$$\overrightarrow{AB}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$•$\overrightarrow{AB}$=2m($\overrightarrow{AD}$+$\overrightarrow{DO}$)•$\overrightarrow{AB}$,从而可得m=$\frac{cosB+cosAcosC}{sinC}$=sinA,从而解得.

解答 解:取AB的中点D,则$\overrightarrow{AO}$=$\overrightarrow{AD}$+$\overrightarrow{DO}$,
代入$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=2m$\overrightarrow{AO}$得,
$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=2m($\overrightarrow{AD}$+$\overrightarrow{DO}$),
∵$\overrightarrow{OD}$⊥$\overrightarrow{AB}$,∴$\overrightarrow{OD}$•$\overrightarrow{AB}$=0;
∴$\frac{cosB}{sinC}$$\overrightarrow{AB}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$•$\overrightarrow{AB}$=2m($\overrightarrow{AD}$+$\overrightarrow{DO}$)•$\overrightarrow{AB}$,
∴$\frac{cosB}{sinC}$c2+$\frac{cosC}{sinB}$bcosA=mc2
由$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$化简可得,
$\frac{cosB}{sinC}$sin2C+$\frac{cosC}{sinB}$sinBsinCcosA=msin2C,
∴m=$\frac{cosB+cosAcosC}{sinC}$=sinA,
又∵tanA=$\frac{1}{2}$,
∴sinA=$\frac{\frac{1}{2}}{\sqrt{1+\frac{1}{4}}}$=$\frac{{2\sqrt{5}}}{5}$,
故答案为:$\frac{{2\sqrt{5}}}{5}$.

点评 本题考查了平面向量的运算及解三角形的运算应用,同时考查了数形结合的思想方法应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网